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Self-similarity in entanglement complexity along the backbones of compact proteins

Gustavo A. Arteca
Département de Chimie et Biochimie, Laurentian University, Ramsey Lake Road, Sudbury, Ontario, Canada P3E 2C6

~Received 25 February 1997; revised manuscript received 5 May 1997!

The mean overcrossing number is a useful descriptor of the nature and complexity of self-entanglements in
polymer conformations. We show that this descriptor exhibits a degree of self-similarity along the backbones
of protein native states. We have estimated the scaling exponent for the power-law behavior of the mean
number of overcrossings as a function of the contour lengthwithin a fixed~compact! backbone. The reported
scaling behavior is found in self-entanglements and not in descriptors of molecular size. The result provides a
useful criterion for the elucidation of protein conformations.@S1063-651X~97!11909-2#

PACS number~s!: 87.15.He, 82.20.Wt, 05.90.1m
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Despite the specific relation between protein composit
and its biochemical function, most protein native states
known to share several basic three-dimensional~3D! struc-
tural features@1#. The interpretation of these similarities
subject of much debate@2,3#. If we look for only essential
global shape features, qualitative similarities could be use
to define an ‘‘average’’ native state, containing all rough 3
features common to most proteins. It would be desirable
such an average state should be characterized by ascaling
regime, as defined by the dependence of some shape des
tor with the number of amino acid residues,n. However,
standard descriptors of molecular size used in polymer
tistics ~e.g., the radius of gyration,RG! do not exhibit a clear
regime for proteins and thus do not provide a character
tion for the ‘‘average’’ native state@4–6#. A study of global
molecular shape similarities within a large protein datab
requires alternative descriptors. These should meet some
teria: ~i! to be not explicitly dependent~a priori! on molecu-
lar size;~ii ! to exhibit scaling with the number of residue
~iii ! to take into account the 3D ‘‘trace’’ of the backbon
Measures ofchain self-entanglementsprovide such a de-
scriptor for polymers@7–9#. Here, we expand the analysis
these descriptors and report on their scaling behavior for
perimental protein backbones.

Self-entanglements convey the ‘‘twists, turns, and fold
found along a polymer chain in a rigid configuration. The
features depend on the connectivity of the polymer ba
bone, and not only on the spatial position of the monom
@7,8#. As a result, self-entanglements provide a better t
than molecular size or anisometry descriptors for compa
‘‘folding topologies’’ @9–11#. Previous work in the literature
has used measures of backbone entanglement to asses
bal homologies between protein folds@9# and to monitor
changes in three-dimensional shape during conformatio
rearrangements triggered by ligand binding@11#.

Self-entanglements can be characterized by geomet
or topological descriptors. A simple geometrical descrip
uses the notion of ‘‘backbone overcrossings’’ @7,8#. Over-
crossings~or ‘‘double points’’ in knot theory! are the points
where two bonds appear to cross in a regular 2D projec
of a rigid 3D conformation. A simple descriptor of entangl
ment is themean number of overcrossings N¯~or ‘‘average
crossing number’’!, computed as an average over all possi
rigid projections@7–9#. Its configurational average over a
561063-651X/97/56~4!/4516~5!/$10.00
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ensemble of accessible conformers will be indicated by^N̄&.
As a shape descriptor,^N̄& conveys briefly the folding nature
of accessible conformers. In an unentangled chain~e.g., a
rodlike rigid polymer or a polymer in a ‘‘good’’ solvent!,
most 3D projections will not produce overcrossings, and th
we expect small̂ N̄& values. The more entangled the cha
the larger thê N̄& value. Note that very compact chains w
necessarily produce large overcrossing numbers. Howe
in polymers with intermediate compactness~e.g., globular
proteins! the degree of entanglement is not directly related
molecular size. Two polymers with similar molecular size
anisometry may yet be distinguished by their folding featu
@10,11#. Therefore, mean overcrossing numbers provide
powerful additional tool to discriminate between polyme
according to their folding patterns.

The physical relevance of these descriptors is becom
apparent. In the case of knotted DNA,^N̄& correlates with
the electrophoretic diffusion velocity@12,13#. Also, the value
of ^N̄& for a tubelike polymer knot with maximum cros
sectional diameter appears to be a topological invariant@14#.
These recent developments show that a descriptor of
tanglement can provide more insights into the nature of ch
configurations than simple molecular size descriptors. In
dition, they also indicate that geometrical descriptors of
tanglement can yield information on polymer topology.
this work, we apply these notions to study linear polyme

The presence of common global features among poly
configurations produces a well-defined scaling law for^N̄& in
terms of the monomer numbern. Lattice @15# and off-lattice
@16# polymer simulations indicatê N̄&;Bnb, where the
scaling exponentb changes little with the monomer
monomer interaction. It can be easily proved that 1<b<2
in three dimensions@15#. Numerical results for polymer
models suggest a lower bound ofb.1.12 @15#, an upper
bound of b,1.40 @16# using medium size chains, and a
extrapolated value ofb'1.2 in very long chains. Conjectura
arguments appear to support a value below 1.40@17#. Re-
cently, we have shown that a similar exponent is fou
within an ensemble of ca. 350 experimental protein nat
states@8#. It should be noticed that this scaling law is on
found in a geometric descriptor of entanglements. Desc
tors of molecular size~e.g.,RG! do not exhibit a clear scaling
within the same set of structures.
4516 © 1997 The American Physical Society
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56 4517SELF-SIMILARITY IN ENTANGLEMENT COMPLEXITY . . .
A scaling law in the shape of actual backbones is a us
tool for modeling protein structure@5#. For instance, it can be
used to discard unlikely features when testing possible fo
ing patterns. Here, we extend further the previous work
proteins by analyzing the scaling behavior ofN̄ in much
greater detail. We are interested in the following two qu
tions: ~a! Is there a differential scaling behavior~i.e., a varia-
tion in b exponent! associated with whether protein nativ
states are compact or not?~b! Consider a ‘‘series’’ of chains
defined by increasingly longer partial sections of a giv
backbone. Is there a scaling behavior in the mean overcr
ing numbers associated with this sequence of backbones
gardless of primary sequence? Such a behavior would im
a measure of self-similarity in entanglements along prot
backbones.

In order to address these two questions, we have con
ered a working set with 904 single-monomer protein ba
bones in their experimental native states~as deposited in the
Brookhaven Protein Data Bank, PDB@18#!. Each structure is
analyzed in terms of thea-carbon backbone~i.e., one atom
per amino acid residue!. Our ensemble mimics the know
distribution of backbone lengths and it has no bias with
spect to a particular secondary structural feature. The
spans a large variety of 3D structures, molecular sizes,
primary sequences.

TheN̄ values have been computed to an accuracy of th
significant figures, using an algorithm explained elsewh
@9#. We will distinguish between the mean number of ov
crossings of the entire backbone and of a section of it. C
sider the section of ann-residue backbone~in its native state!
containing its firstn1>3 residues. The mean overcrossi
number associated with this section is denoted byN̄(n1 ,n).
@Since three consecutive atoms define a plane and do
overcross, thenN̄(3,n)50 for all n>3.#

We study the molecular shape features of~a! the full
chain, characterized byN̄(n,n), ~b! the sequence of back
bone segments with lengths nk5kn1<n, k
51,2,3, . . . ,max(k)5int@n/n1#. For the full backbone, we
test a scaling law:

N̄~n,n!;Bnb, ~1!

whereas for sections of a given backbone we test an alte
tive scaling:

@N̄~nk ,n!#n;Gnk
g , ~2!

where@N̄(nk ,n)#n indicates thatnk varies andn is kept con-
stant ~i.e., a scaling law within a single native state!. We
shall use the terms ‘‘global’’ and ‘‘local’’ scaling exponen
when referring tob and g, respectively. In general, the ex
ponentsb and g can be different. Similar scaling laws ca
also be tested in other descriptors, e.g., by defin
@RG(nk ,n)#n for the molecular size.

First, we address the question of the possible depend
of exponentb on backbone compactness. Figure 1 indica
a well-defined scaling behavior in the working set of 9
proteins.~Such a behavior is not found inRG or other mo-
lecular size descriptors.! A mean scaling law for the entire
ul
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set can be extracted from a ln(N̄)-ln(n) regression. Restrict-
ing the correlation to the 684 ‘‘long’’ proteins (n>100) in
our set, we obtain

N̄~n,n!;~0.05060.005!n~1.3960.02!, C50.9892, ~3!

whereC is the correlation coefficient and the errors corre
sponds to 95% confidence intervals. The scaling expone
b51.3960.02 refines previous estimations derived within
much smaller sample of proteins@8#. @For completeness, we
have also checked an asymptotic behavior of the for
N̄(n,n);B8(n23)b, which satisfies the limitN̄(3,3)50.
The results are comparable to those in Eq.~3!: B850.055
60.006 andb51.3760.02.#

The large working set used here allows us to do furth
refinements and address the first question mentioned abo
As suggested by Fig. 1, two slightly different scaling law
could be conjectured. Our results are bound between tho
corresponding to two limitb values. Proteins with large
mean overcrossing numbers appear to follow a law with sc
ing exponentb'4/3. In contrast, native states with a mini-
mal number of overcrossings follow a law withb'3/2. The
overcrossing numbers for largen would appear to be already
in the asymptotic regime, since no systematic curvature
observed aftern.100. Thus, the difference in scaling doe
not seem to be an artifact due to low residue numbers.~The
exceptional points found Fig. 1 are mostlya-helical proteins.
These are not typical native states, and follow a differe
scaling law.

Proteins whose mean overcrossing numbers grow asN̄
;n4/3 appear to include those with maximally compact back
bones, i.e., those with a minimum value of backbone radi
of gyration within a range ofn values@8#. We have checked
the consistency of this observation by correlatingRG

2 and N̄
values for compact proteins withn,300 @8#. We obtain

FIG. 1. Scaling behavior of the mean number of overcrossin
(N̄) a-carbon backbones withn amino acid residues.@Each square
represents a backbone in its native state. The straight lines prov
qualitative bounds to the ‘‘effective’’ scaling exponentb.#
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4518 56GUSTAVO A. ARTECA
RG
2 ;N̄d, with d'0.5060.03, andC50.9930. Since short

very compact proteins are found in the collapsed polym
regime,~i.e., RG;n1/3 @5#!, the expected scaling coefficien
should beb52/3d'4/3.

The above mean scaling behavior of an ‘‘average’’ nat
state provides a reference for the analysis of ‘‘local’’ se
entanglements, i.e.,within a given protein backbone. Ou
main result in this work is that a law such as Eq.~2! does
indeed take place, at least for compact proteins.

Figure 2 illustrates the typical results for the mean ov
crossing numbers along a compact backbone,@N̄(nk ,n)#n .
The example shows glucose oxidase~PDB code 1GAL!.
This protein has the smallestRG value among the backbone
with residue number 550<n<600. Figure 2 compares th
behavior of RG for the partial backbone segmen
„@RG(nk ,n)#n… with that of @N̄(nk ,n)#n . @The CPU time re-
quired to characterize the ‘‘local scaling’’ grows astCPU
'k3t(n1)/3, wheret(n1) is the CPU time needed to compu
the first section ofn1 residues. The analysis of 1GAL, wit

FIG. 2. Compared scaling behavior of the radius of gyrat
(RG) and the mean number of overcrossings (N̄) for sequential
sections of the 1GAL protein.@The results for this protein~black
squares! are contrasted with the average scaling of the entire se
full backbones~thin lines!.#
r

e

-

n5581 andn1550, requires ca. 9 h CPU on a DEC 255/233
AXP workstation.#

Figure 2 contrasts the values of@RG(nk ,n)#n and
@N̄(nk ,n)#n for 1GAL with those for thefull backbonesof
904 native states~thin line!. Two general observations ar
illustrated in Fig. 2:~a! There is no ‘‘local’’ scaling law for
molecular size. As the length of the backbone segments
creases, the radius of gyration initially increases. Howev
in segments longer thannk.250 the center of mass shifts i
such a way that the radius of gyration@RG(nk ,n)#n remains
essentially constant. All segments longer thannk.250 can-
not be distinguished according to molecular size, ev
though the protein chain becomes more convoluted asnk
increases.~b! There is a clear ‘‘local’’ scaling for chain self
entanglements. Whereas the molecular size remains con
in segments longer than 250 residues, the chain entan
ments continue to increase according to a well-defined po
law. Qualitatively, the local scaling for@N̄(nk ,n)#n in
1GAL is similar to the behavior found in the ‘‘average
native state~thin line!.

The same essential features are also found in other c
pact proteins.~The discussion below is restricted to the ca
of very compact proteins. These provide the best case
analysis, since they exhibit the clearest scaling behavio
molecular size and self-entanglements@5#.! Figure 3 shows
the change in@N̄(nk ,n)#n for a number of proteins, chose
according to the compactness criterion used in Ref.@5#.
Roughly the same scaling is observed, except in very s
segments. Since these compact chains span the ty
lengths (200,n,600), the occurrence of local scaling inN̄
appears to be a feature independent of protein length
primary sequence.

In summary, the results in Figs. 2 and 3 point toward
following conjecture: from the viewpoint of self
entanglements, a~nontrivially short! section of lengthnk of a
compactn-residue backbone in its native state resembles
self the ‘‘average’’ native state of another compact prot
with a ‘‘full’’ backbone of nk residues.

of

FIG. 3. Self-similarity in overcrossing numbers along the cha
of selected proteins with maximally compact backbones.@The let-
ters stand for~a! 1GAL ~thick line!, ~b! 7ENL, ~c! 3CPA,~d! 3TEC;
~e! 1SGT,~f! 2SOD.#
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56 4519SELF-SIMILARITY IN ENTANGLEMENT COMPLEXITY . . .
Nevertheless, the resemblance between annk-residue seg-
ment and a fullnk-residue native protein is only qualitative
For a quantitative comparison, Table I shows the estima
local scaling exponentsg @Eq. ~2!# for a number of compac
proteins, including those in Fig. 3. In all cases, the segme
have been defined starting from the first available resid
but the length of the segment has been varied accordin
the protein length.@The results do not change significantly
one takes another amino acid as a starting point. It mus
noted that Eq.~2! is the only form of self-similarity we have
found. Other sequences of ‘‘partial’’ backbones were tes
For instance, we considered the backbones obtained by s
ping everyn1 /s residues, wheres51,2,4,8, . . . . This se-
quence, resembling the standard test for fractality, exhi
no scaling inN̄.#

Table I shows that a power-law behavior is valid for
the proteins tested. Within the precision of the calculatio
we estimate an average local scaling exponent for com
proteins:

g51.5460.08. ~4!

This exponent represents a mean over the entire set; ou
sults do not rule out a small dependence ofg with protein
sequence.

The difference between local and global exponents
pears to be significant. The scaling law ofN̄(n,n) for the
completebackbones of the selected group of compact p
teins is consistent with the results for all other proteins.„For
the proteins in Table I, a regression ln@N̄(n,n)#2ln(n) gives
b51.3260.10, C50.9969, in agreement with Eq.~1!.…
These results indicate that~a! the global scaling exponentb
for the subset of compact proteins is close to its ‘‘effectiv
lower bound within the set of native states (b'4/3), ~b! the
local scaling exponentg for compact proteins is closer to th
‘‘effective’’ upper bound to the scaling exponent for nativ
states (b'3/2).

TABLE I. Local scaling exponents~g! for the mean number o
overcrossingsN̄(nk ,n), for selected proteins with maximally com
pact a-carbon backbones.@The errors are indicated at 95% con
dence level. The correlation coefficientC and the number ofnk

values in the correlation are given in the last column.#

PDB code (n) g C $max(k)%

1SGT ~223! 1.6460.11 0.9947$14%

3TEC ~279! 1.5460.05 0.9982$19%

3CPA ~307! 1.5060.07 0.9979$12%

1ALD ~363! 1.6060.02 0.9999$10%

7ENL ~436! 1.4460.12 0.9932$12%

1GLY ~470! 1.4360.05 0.9995$8%

1COX ~502! 1.5960.05 0.9993$9%

1GAL ~581! 1.5760.05 0.9989$11%
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These results can be interpreted as follows. In terms
self-entanglements, long segments of a compact backb
appear to behave as proteins innoncompactnative states.
This conclusion is consistent with our observations for
molecular size. As we consider shorter sections of
n-residue backbone, we observed that the mean overcros
number decreases whereas the molecular size is cons
Therefore, these segments should resemble less compac
teins~which are characterized byb'3/2!. The present local
scaling law@Eq. ~2!# provides a precise quantitative expre
sion for the shape of these segments.

The scaling laws in mean overcrossing numbers can
valuable towards the elucidation of protein structure from
primary sequence@19–22#. Current procedures use homo
ogy modeling to predict structural content. However, for n
sequences with little similarity to others in a database, s
cess in predicting secondary structure rarely surpasses
@20–22#. Our results provide an additional criterion to te
the reliability of a model folding pattern. We propose here
improved algorithm that would work as follows:~a! After an
initial guess for the tertiary structure, one computes
@N̄(nk ,n)#n values for a sequence of$nk% backbone seg-
ments.~b! If the results in~a! show no power-law scaling o
a local scaling exponent far from Eq.~4!, the proposed 3D
structure could be rejected in a first approximation.~c! New
tentative structures could be tried by changing the packing
secondary structural elements. An acceptable 3D struc
should show scaling in the ‘‘local’’ mean overcrossing num
bers,@N̄(nk ,n)#n , while maintaining the ‘‘local’’ radius of
gyration, @RG(nk ,n)#n , virtually constant over a range o
segment lengths.~d! If no structure is found to satisfy the
criterion ~c!, then one should revise the secondary struct
content and begin the test again from~a!.

We believe that this method could also be an additio
tool to improve the algorithms for designing sequences w
desired structural features~de novoor ‘‘inverse’’ folding
@19,23#!.

Finally, the present results show that the simultane
analysis ofdistinct shape descriptors~e.g., molecular size
and chain self-entanglements! can lead to valuable insight
into polymer configurations. Previously, we have shown t
a comparative study of size and entanglements allows on
assess the structural and dynamic stability of linear polym
with variable composition and at various temperatu
@10,11#. In these cases, we showed the conditions for
persistence over time of certain global folding features. T
present work could allow one to extend these notions to
conservation of local folding patterns, e.g., secondary str
ture. To this purpose, we are currently testing the conditi
under which the present local scaling in mean overcross
numbers is also also found in the average configuration
linear polymer models.

I thank Denise Caughill for her collaboration in the com
putations and Naomi Grant for her comments on the ma
script. This work was supported by FRUL and by Gran
from NSERC~Canada!.
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