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Self-similarity in entanglement complexity along the backbones of compact proteins
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The mean overcrossing number is a useful descriptor of the nature and complexity of self-entanglements in
polymer conformations. We show that this descriptor exhibits a degree of self-similarity along the backbones
of protein native states. We have estimated the scaling exponent for the power-law behavior of the mean
number of overcrossings as a function of the contour lemgthin a fixed (compact backbone. The reported
scaling behavior is found in self-entanglements and not in descriptors of molecular size. The result provides a
useful criterion for the elucidation of protein conformatiof§1063-651X97)11909-3

PACS numbegs): 87.15.He, 82.20.Wt, 05.98m

Despite the specific relation between protein compositiorensemble of accessible conformers will be indicated Ndy.
and its biochemical functlon_, most protein native states ar@\s 3 shape descriptofiN) conveys briefly the folding nature
known to share several basic three-dimensidB8l) struc-  of gccessible conformers. In an unentangled chaig., a
tural featureq1]. The interpretation of these similarities is ;oqjike rigid polymer or a polymer in a “good” solvept
subject of much debatk?,3]. If we look for only essential  mgost 3D projections will not produce overcrossings, and thus
global shape featuresjualitative similarities could be used |, expect smal{N) values. The more entangled the chain

to define an “average” native state, containing all rough 3D . .
features common to most proteins. It would be desirable thatr|e larger th&N) value. Note that very compact chains wil

such an average state should be characterized $xakng inecislsr?:g?/s p\,(,?t?‘u?ri;?rL%%ig;/:rggﬁsggn&:;nbers[o't;'lﬁ\gfver’
regime as defined by the dependence of some shape descriélFoFt)eizQ the degree of entan Iementpis not dirge.(,:tlg related to
tor with the number of amino acid residues, However, 9 9 y

. . . molecular size. Two polymers with similar molecular size or
standard descriptors of molecular size used in polymer sta-

tistics (e.g., the radius of gyratioRg) do not exhibit a clear anisometry may yet be distinguished by their folding features

. . : . a[lO,lj]. Therefore, mean overcrossing numbers provide a
regime for proteins and thus do not provide a characteriza: o S
tion for the “average” native statpd—6]. A study of global powerful additional tool to discriminate between polymers

molecular shape similarities within a large protein databa\s(gwCorOIIng o their folding patterns. . . .
requires alternative descriptors. These should meet some cri- The physical relevance of these descriptors is bec'omlng
teria: (i) to be not explicitly dependeri priori) on molecu-  aPparent. In the case of knotted DN{N) correlates with
lar size: (ii) to exhibit scaling with the number of residues; € €lectrophoretic diffusion velocif.2,13. Also, the value
(iii) to take into account the 3D “trace” of the backbone. Of (N) for a tubelike polymer knot with maximum cross
Measures ofchain self-entanglementsrovide such a de- Sectional diameter appears to be a topological invafibdit
scriptor for polymer§7-9]. Here, we expand the analysis of These recent developments show that a descriptor of en-
these descriptors and report on their scaling behavior for eX@nglement can provide more insights into the nature of chain
perimental protein backbones. configurations than simple molecular size descriptors. In ad-
Self-entanglements convey the “twists, turns, and folds" dition, they also indicate that geometrical descriptors of en-
found along a polymer chain in a rigid configuration. Thesetanglement can yield information on polymer topology. In
features depend on the connectivity of the polymer backthis work, we apply these notions to study linear polymers.
bone, and not only on the spatial position of the monomers The presence of common global features among polymer
[7,8]. As a result, self-entanglements provide a better tootonfigurations produces a well-defined scaling law(fgy in
than molecular size or anisometry descriptors for comparingerms of the monomer number Lattice[15] and off-lattice
“folding topologies” [9—11]. Previous work in the literature [16] polymer simulations indicatd N)~Bn?, where the
has used measures of backbone entanglement to assess gloaling exponent8 changes little with the monomer-
bal homologies between protein fold8] and to monitor monomer interaction. It can be easily proved that <2
changes in three-dimensional shape during conformationah three dimensiong15]. Numerical results for polymer
rearrangements triggered by ligand bind{dg]. models suggest a lower bound g£>1.12 [15], an upper
Self-entanglements can be characterized by geometricdound of 8<1.40[16] using medium size chains, and an
or topological descriptors. A simple geometrical descriptorextrapolated value g8~ 1.2 in very long chains. Conjectural
uses the notion of backbone overcrossings[7,8]. Over-  arguments appear to support a value below 1#41. Re-
crossingsg(or “double points” in knot theory are the points  cently, we have shown that a similar exponent is found
where two bonds appear to cross in a regular 2D projectiowithin an ensemble of ca. 350 experimental protein native
of a rigid 3D conformation. A simple descriptor of entangle- states[8]. It should be noticed that this scaling law is only
ment is themean number of overcrossings (dr “average found in a geometric descriptor of entanglements. Descrip-
crossing number), computed as an average over all possibletors of molecular sizée.g.,R¢) do not exhibit a clear scaling
rigid projections[7—-9]. Its configurational average over an within the same set of structures.
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A scaling law in the shape of actual backbones is a useft  1g00
tool for modeling protein structufés]. For instance, it can be
used to discard unlikely features when testing possible fold
ing patterns. Here, we extend further the previous work or
proteins by analyzing the scaling behavior Mfin much
greater detail. We are interested in the following two ques: 100 -
tions: (a) Is there a differential scaling behavifre., a varia-
tion in B exponenk associated with whether protein native
states are compact or ndt® Consider a “series” of chains
defined by increasingly longer partial sections of a given
backbone. Is there a scaling behavior in the mean overcros 10 4
ing numbers associated with this sequence of backbones, r
gardless of primary sequence? Such a behavior would impl
a measure of self-similarity in entanglements along proteir
backbones.

In order to address these two questions, we have consit
ered a working set with 904 single-monomer protein back-
bones in their experimental native statas deposited in the
Brookhaven Protein Data Bank, PO)B8]). Each structure is
analyzed in terms of tha-carbon backboné.e., one atom
pgr f"‘m'.”o acid residie Our ensembl? mimics the knpwn FIG. 1. Scaling behavior of the mean number of overcrossings
distribution of backbone lengths and it has no bias with re-—

. -carbon backbones with amino acid residuegEach square
spect to a particular secondary structural feature. The sig) * $ i,

. . presents a backbone in its native state. The straight lines provide
spans a large variety of 3D structures, molecular sizes, angjitative bounds to the “effective” scaling expone
primary sequences.

. T_h_eN val_ues have _been compu'_[ed toan accuracy of threget can be extracted from aﬁ(ln(n) regression. Restrict-
significant figures, using an algorithm explained elsewheré

[9]. We will distinguish between the mean number of over-9 the correlathn to the 684 "long™ proteinsné100) in
X . : . our set, we obtain

crossings of the entire backbone and of a section of it. Con-

sider the section of an-residue backbongn its native statg

containing its firstn;=3 residues. The mean overcrossing

number associated with this section is denotedNIfgi;,n).  \\nereC is the correlation coefficient and the errors corre-

[Since three consecutive atoms define a plane and do nghon4s to 95% confidence intervals. The scaling exponent
overcross, thei(3,n)=0 for all n=3] B=1.39+0.02 refines previous estimations derived within a
We study the molecular shape features(af the full  ych smaller sample of proteifig]. [For completeness, we
chain, characterized bi(n,n), (b) the sequence of back- have also checked an asymptotic behavior of the form

bone  segments  with lengths ni=km=n, Kk  N(n,n)~B’(n—3)# which satisfies the limitN(3,3)=0.
=123 ... ,maxk)=int[n/n,]. For the full backbone, we The results are comparable to those in E): B’ =0.055
test a scaling law: +0.006 andg=1.37+0.02]
L The large working set used here allows us to do further
N(n,n)~Bn?, ) refinements and address the first question mentioned above.
As suggested by Fig. 1, two slightly different scaling laws
gould be conjectured. Our results are bound between those
corresponding to two limit3 values. Proteins with large
mean overcrossing numbers appear to follow a law with scal-
_ ing exponentB=4/3. In contrast, native states with a mini-
[N(ny,n)],~Gny, (20 mal number of overcrossings follow a law wig~3/2. The
overcrossing numbers for largewould appear to be already
Where[N_(nk,n)]n indicates than, varies anch is kept con- in the asymptotic regime, since no system.atic cu_rvature is
stant(i.e., a scaling law within a single native stat&Ve observed aften>100..Thus, the d|fferenqe in scaling does
shall use the terms “global” and “local” scaling exponents NOt s€em to be an artifact due to low residue numh@ise
when referring tog and y, respectively. In general, the ex- exceptional points found Fig. 1 are mostiyhelical proteins.
ponentsg and y can be different. Similar scaling laws can The_se are not typical native states, and follow a different
also be tested in other descriptors, e.g., by definingc@ling law. —
[Rg(Ng.n)], for the molecular size. Proteins whose mean overcrossing numbers growN as
First, we address the question of the possible dependencen™” appear to include those with maximally compact back-
of exponentB on backbone compactness. Figure 1 indicatedones, i.e., those with a minimum value of backbone radius
a well-defined scaling behavior in the working set of 9040f gyration within a range ofi values[8]. We have checked
proteins.(Such a behavior is not found iR or other mo-  the consistency of this observation by correlatitlg and N
lecular size descriptogsA mean scaling law for the entire values for compact proteins with<<300 [8]. We obtain

|

904 proteins

10 100 1000 10000

1 t t

N(n,n)~(0.050+0.009n(13%002  c=0.9892, (3)

whereas for sections of a given backbone we test an altern
tive scaling:
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1000 FIG. 3. Self-similarity in overcrossing numbers along the chains
of selected proteins with maximally compact backborn&be let-
ters stand fofa) 1GAL (thick line), (b) 7ENL, (c) 3CPA,(d) 3TEC;
(e) 1SGT,(f) 2SOD]
100 1
n=>581 andn,;=>50, requires ca9 h CPU on a DEC 255/233
N AXP workstation]
__Figure 2 contrasts the values dfRg(ny,n)], and
10 A [N(ny,n)], for 1GAL with those for thefull backbonesof
904 native statesthin line). Two general observations are
illustrated in Fig. 2:(a) There is no “local” scaling law for
molecular size. As the length of the backbone segments in-
1 . creases, the radius of gyration initially increases. However,

10 - 100 1000 in segments longer tham,>250 the center of mass shifts in
such a way that the radius of gyratipRg(n,,n)], remains
essentially constant. All segments longer tmgr-250 can-
not be distinguished according to molecular size, even
though the protein chain becomes more convolutethas

FIG. 2. Compared scaling behavior of the radius of gyrationjncreases(b) There is a clear “local” scaling for chain self-
(Rg) and the mean number of overcrossingé) (for sequential  entanglements. Whereas the molecular size remains constant
sections of the 1GAL proteifThe results for this proteitblack segments longer than 250 residues, the chain entangle-
squaresare contrasted with the average scaling of the entire set ofents continue to increase according to a well-defined power
full backbonegthin lines.] | N . Y .

aw. Qualitatively, the local scaling fofN(n,,n)], in
_ 1GAL is similar to the behavior found in the “average”

RZ~N?, with §~0.50+0.03, andC=0.9930. Since short, native statgthin line).
very compact proteins are found in the collapsed polymer The same essential features are also found in other com-
regime, (i.e., Rg~n*?[5]), the expected scaling coefficient pact proteins(The discussion below is restricted to the case
should beB=2/35~4/3. of very compact proteins. These provide the best case for

The above mean scaling behavior of an “average” nativeanalysis, since they exhibit the clearest scaling behavior in
state provides a reference for the analysis of “local” self-molecular size and self-entanglemef$.) Figure 3 shows
entanglements, i.ewithin a given protein backbone. Our the change ifN(n,,n)], for a number of proteins, chosen
main result in this work is that a law such as E) does  according to the compactness criterion used in RS

indeed take place, at least for compact proteins. Roughly the same scaling is observed, except in very short
Figure 2 illustrates the typical results for the mean oversegments. Since these compact chains span the _typical
crossing numbers along a compact backbd®n,,n)],.  lengths (208cn<600), the occurrence of local scalinghh

The example shows glucose oxida@eDB code 1GAL.  appears to be a feature independent of protein length and
This protein has the smalleRg value among the backbones primary sequence.

with residue number 550n<600. Figure 2 compares the  |n summary, the results in Figs. 2 and 3 point toward the
behavior of Rz for the partial backbone segments following conjecture: from the viewpoint of self-
([Rg(ng,n)1,) with that of[N(n,,n)],. [The CPU time re- entanglements, @ontrivially shor} section of lengtn, of a
quired to characterize the “local scaling” grows &gpy  compactn-residue backbone in its native state resembles it-
~k3t(n,)/3, wheret(n,) is the CPU time needed to compute self the “average” native state of another compact protein
the first section oh, residues. The analysis of 1GAL, with with a “full” backbone of n, residues.
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TABLE 1. Local scaling exponentéy) for the mean number of These results can be interpreted as follows. In terms of
overcrossingdN(n,,n), for selected proteins with maximally com- self-entanglements, long segments of a compact backbone
pact a-carbon backbone$The errors are indicated at 95% confi- appear to behave as proteins noncompactative states.
dence level. The correlation coefficie@t and the number ofi, ~ This conclusion is consistent with our observations for the

values in the correlation are given in the last column. molecular size. As we consider shorter sections of an
n-residue backbone, we observed that the mean overcrossing
PDB code ) vy C {maxK)} number decreases whereas the molecular size is constant.

Therefore, these segments should resemble less compact pro-

1SGT (223 1.64x0.11 0.9947{14} teins(which are characterized h§~3/2). The present local
3TEC (279 1.54+0.05 0.9982{19; scaling law[Eq. (2)] provides a precise quantitative expres-
3CPA(307 1.50+0.07 0.9979{12 sion for the shape of these segments.

1ALD (363 1.60+0.02 0.9999{10} The scaling laws in mean overcrossing numbers can be
7ENL (436 1.44+0.12 0.9932{12} valuable towards the elucidation of protein structure from the
1GLY (470 1.43+0.05 0.9995{8} primary sequenc@l9-23. Current procedures use homol-
1COX (502 1.59+0.05 0.9993{9} ogy modeling to predict structural content. However, for new
1GAL (581) 1.57+0.05 0.9989{11} sequences with little similarity to others in a database, suc-

cess in predicting secondary structure rarely surpasses 70%
[20-22. Our results provide an additional criterion to test
] the reliability of a model folding pattern. We propose here an
Nevertheless, the resemblance betweenaresidue seg-  improved algorithm that would work as follow&) After an
ment and a fulln,-residue native protein is only qualitative. initial guess for the tertiary structure, one computes the
For a quantitative comparison, Table | shows the estimateg\(n, n)], values for a sequence ¢h,} backbone seg-
local scaling exponents [Eq. (2)] for a number of compact ments,(b) If the results in(a) show no power-law scaling or
proteins, including those in Fig. 3. In all cases, the segmentg |oca| scaling exponent far from E@), the proposed 3D
have been defined starting from the first available residuestrycture could be rejected in a first approximatiam.New
but the length of the segment has been varied according {@ntative structures could be tried by changing the packing of
the protein length|.The results do not change significantly if secondary structural elements. An acceptable 3D structure
one takes another amino acid as a starting point. It must bgnou|d show scaling in the “local” mean overcrossing num-
noted that Eq(2) is the only form .of self-similarity we have bers,[N_(nk,n)]n, while maintaining the “local” radius of
found. Other sequences of “partial” backbones were tested yration, [Rg(ny,n) ], virtually constant over a range of

For instance, we considered the backbones obtained by ski egment lengths(d) If no structure is found to satisfy the

ping everyn, /s r.esidues, whers=1248... . T'his S€-  criterion (c), then one should revise the secondary structure
qguence, resembling the standard test for fractality, eXh'b't%ontent and begin the test again frda.
no scaling inN. ] We believe that this method could also be an additional

Table | shows that a power-law behavior is valid for all too to improve the algorithms for designing sequences with
the proteins tested. Within the precision of the calculationsgesired structural feature@e novoor “inverse” folding
we estimate an average local scaling exponent for compagfg 3).

proteins: Finally, the present results show that the simultaneous
analysis ofdistinct shape descriptorge.g., molecular size
v=1.54+0.08. (4) and chain self-entanglemeptsan lead to valuable insights

into polymer configurations. Previously, we have shown that

This exponent represents a mean over the entire set; our ré-comparative study of size and entanglements allows one to
sults do not rule out a small dependenceyofiith protein ~ 2SS€SS the structural and dynamic stability of linear polymer
sequence. with variable composition and at various temperatures

The difference between local and global exponents ap[lo,ll]. In these cases, we showed the conditions for the

pears to be significant. The scaling law N{n,n) for the persistence over time of certain global folding features. The

completebackbones of the selected group of compact pro_present work could allow one to extend these notions to the

teins is consistent with the results for all other proteiifsr conservation of local folding patterns, €9, secondary struc-

h o bl e | . ture. To this purpose, we are currently testing the conditions
the proteins in Table |, a regressioriMinn)]—=In(n) gives ,nqer \which the present local scaling in mean overcrossing
B=1.32£0.10, C=0.9969, in agreement with Eql).)

e . numbers is also also found in the average configuration of

These results indicate théd) the global scaling exponert ;
I ot _ linear polymer models.

for the subset of compact proteins is close to its “effective
lower bound within the set of native state8~4/3), (b) the | thank Denise Caughill for her collaboration in the com-
local scaling exponeng for compact proteins is closer to the putations and Naomi Grant for her comments on the manu-
“effective” upper bound to the scaling exponent for native script. This work was supported by FRUL and by Grants
states 3~3/2). from NSERC(Canada
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